Search results for "Orthopedic device"
showing 2 items of 2 documents
In vitro corrosion and biocompatibility of brushite/hydroxyapatite coatings obtained by galvanic deposition on 316LSS
2018
Corrosion behavior and cytotoxicity was reported for mixed brushite (BS)/hydroxyapatite (HA) coatings deposited on 316LSS substrate through a displacement reaction. Corrosion tests, carried out in a simulated body fluid, showed that in comparison with bare 316L, coating shifts Ecorrto anodic values and reduces icorreven if oscillations were observed, which were explained in terms of the chemical interactions at the solid/liquid interface. Cell biocompatibility of the coating was investigated through osteoblastic cell line MC3T3-E1, evidencing the absence of any cytotoxicity Taken together, the results show that galvanic deposition is a simple and cost-effective method for producing bioactiv…
Deposition and characterization of coatings of Hydroxyapatite, Chitosan, and Hydroxyapatite-Chitosan on 316L for biomedical devices
2018
In the last decades, the scientific community has turned on great interest towards the development of increasingly performing biomedical systems. In the orthopedic field, biomedical devices are made up by metallic materials (mainly steel and titanium alloys), which have low/medium resistance to corrosion and a low osteointegration capacity when implanted inside the human body. This can lead to infection or inflammation that can damage the tissues surrounding the implant. The use of biocompatible coatings allows cancelling or mitigating these phenomena. The coating interposing between aggressive environment and biomedical device inhibits corrosion so limiting the metal ions release into the …